computer knowledge-computer organization mcq test-paper3

The performance of cache memory can be represented as
number of hits/total CPU references to the memory
number of hits/(number of hits + number of misses)
Both A \& B
D
number of miss/(number of hits + number of misses)

```

\section*{Answer: C}

The branch logic that provides decision making capabilities in the control unit is known as

controlled transfer
conditional transfer
unconditional transfer
none of the above

\section*{Answer: C}

The type of mapping used by cache memory is/are

associative mapping
direct mapping
set-associative mapping
All of the above

\section*{Answer : D}

In Reverse Polish notation, expression \(A * B+C * D\) is written as


Answer : A
The performance of cache memory can be represented as
\begin{tabular}{ll} 
A & number of hits/total CPU references to the memory \\
B & number of hits/(number of hits + number of misses) \\
\hline C & number of miss/(number of hits + number of misses) \\
D & Only A \& B
\end{tabular}

\section*{Answer: D}

SIMD represents an organization that \(\qquad\) .

A
refers to a computer system capable of processing several programs at the same
represents organization of single computer containing a control unit, processor unit and a memory unit.
includes many processing units under the supervision of a common control unitNone of the above

\section*{Answer : C}

The type of mapping used by cache memory is/are

associative mapping
direct mapping
set-associative mapping
D All of the above

\section*{Answer : D}

Floating point representation is used to store
\begin{tabular}{l|l}
\hline A & Boolean values \\
\hline B & real integers \\
\cline { 1 - 1 } & whole numbers \\
D & integers
\end{tabular}

\section*{Answer: B}

Which of the following cache memory can store two or more words under the same index address?

Associative mapping
B Direct Mapping
C
Set-Associative mapping
D All of the above

Answer: C
Which of the following are replacement methods used by cache memory?
A
FIFO algorithm
LIFO algorithm
Least Recently Used algorithm
D Both A \& C

Answer: D
In computers, subtraction is generally carried out by


9`s complement
10 s complement

1`s complement
2`s complement

Answer : D
Which of the following are correct cache writing method(s)?
\begin{tabular}{ll}
\hline A & write-on policy \\
\hline B & write-through policy \\
C & write-back policy \\
\hline D & Both B \& C
\end{tabular}

Answer : D
The amount of time required to read a block of data from a disk into memory is composed of seek time, rotational latency, and transfer time. Rotational latency refers to

A the time its takes for the platter to make a full rotation
B the time it takes for the read-write head to move into position over the appropriate track
C the time it takes for the platter to rotate the correct sector under the head
D
none of the above

\section*{Answer : A}

Three C's of misses related to cache memory are


Calculative, Capacity, Conflict
Compulsory, Capacity, Conflict
Calculative, Confirmatory, Conflict
Calculative, Confirmatory, Conclusive

Answer : B
What characteristic of RAM memory makes it not suitable for permanent storage?
\begin{tabular}{|l|l}
\hline A & too slow \\
\hline B & unreliable \\
\hline C & it is volatile \\
\hline D & too bulky
\end{tabular}

Answer: C
Which of the following is not the correct technique to reduce cache miss rate?

B Use of Victim Cache
Lower Associativity

Use of Large Cache

Answer: C
The circuit used to store one bit of data is known as
\begin{tabular}{c|c} 
A & Register \\
\hline B & Encoder \\
\hline C & Decoder \\
\hline D & Flip Flop
\end{tabular}

\section*{Answer: D}

Which of the following is not the type of Cache memory?
\begin{tabular}{cll}
\hline A & Instruction Cache \\
B & Informative Cache \\
\hline C & Unified Cache \\
D & Data Cache
\end{tabular}

\section*{Answer: B}

In virtual memory the logical address is mapped to physical address by
\begin{tabular}{|l|l|}
\hline A & Memory Management Unit \\
\hline B & Memory mapper \\
\hline C & Logical address space \\
\hline D & None of the above \\
\hline
\end{tabular}

\section*{Answer : A}
(2FAOC) 16 is equivalent to
```

A (195 084)10
B (001011111010 0000 1100)2
Both (A) and (B)

```
```None of the above
```


## Answer : B

